ANOMALOUS α -EFFECTS DUE TO METHYL SUBSTITUTION IN THE HALF-CHAIR CONFORMATION IN CARBON-13 NMR SPECTROSCOPY¹

Malick Sangaré, Bernard Septe, Guy Bérenger and Gabor Lukacs* Institut de Chimie des Substances Naturelles du C.N.R.S., 91190-Gif-sur-Yvette, France,

and

Kazuo Tori and Taichiro Komeno

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

(Received in Japan 10 January 1977; received in UK for publication 26 January 1977)

In previous paper,^{2,3} we have reported that ¹³C NMR spectroscopy can be efficiently applied to the configurational assignment of epoxides and episulfides on six-membered rings. During these investigations,² we noticed an anomalous negative α -effect (an upfield shift) upon the α -Me substitution of a 5 α -androst-2-ene derivative and its corresponding epoxides. This unexpected observation prompted us to examine the size of the α -effect of a Me group in the halfchair conformation, and in this communication we would like to present our results.

Various Me-substituted 5α -cholestane A-ring epoxides (1-6) were synthesized by 1,4-addition

 $R_2 = H$

4a: $R_1 = R_2 = H$

 $R_1 = Me$, $R_2 = H$

 $4c: R_1 = H, R_2 = Me$

4b:

 R_1 R_1 R_2 $R_1 = R_2 = H$ $2b: R_1 = Me, R$

 $2c: R_1 = H, R_2 = Me$

 $5a: R_1 = H$ $5b: R_1 = Me$

 $3a: R_1 = R_2 = H$

 $3b: R_1 = Me, R_2$

 $3c: R_1 = H, R_2 = Me$

Scheme. A Reduction, tosylation, elimination, epoxidation, reduction, oxidation (six steps). B Bromination, elimination, Grignard reaction⁴ (three steps). C Reduction. tosylation. elimination (three steps).

-D Epoxide inversion (three steps).

of MeMgI in the presence of CuCl to α,β -unsaturated ketones followed by the appropriate chemical transformation. The Grignard reactions were totally stereospecific affording the 1α -Me, 3α -Me, and 4β -Me derivatives.^{4,5} Epoxidation of the intermediate unsaturated systems yielded the α -epoxides exclusively.⁵

The ¹³C signals in la-6a, 3b, and 4b (see the TABLE) were readily assigned by comparison with reported data.^{2,6} The signal assignment of the Me-substitution site was confirmed in six cases by recording the ¹³C spectra of the following deuterated derivatives: $lb-3\beta-d$; $2b-3\beta-d$; $3b-1\beta-d$; $4b-1\beta-d$; $5b-1\beta-d$; and $6b-1\beta-d$. The deuterium-labeled α - and β -epoxides were prepared, respectively, in thirteen and sixteen steps from the known 2-cholestanone-1,1,3,3- d_4 according to the Scheme,⁶ which also shows the procedure leading to all the compounds examined in this paper.

Inspection of the chemical shifts $\binom{\delta_C}{C}$ listed in the TABLE indicates that in the systems. examined, the size of the α -effect due to Me-substitution is totally different from what would be expected for cyclohexanes assuming the chair conformation.[†] The steroidal epoxides studied have their A-ring in the half-chair cyclohexane conformation, causing the unexpected $\frac{\delta_C}{C}$ values.

The α -effect of 1α -Me is upfield (-2.7 and -2.4 ppm for 3b and 4b, respectively). When the

[†] Upon introduction of a methyl group into a six-membered ring attached to an epoxide, strong downfield α - and β -effects were found² when the Me-substitution site was the oxymethine carbon. The β -effects in the present examples are large positive (downfield) shift values ranging from +4.1 to +9.6 ppm for the hydrogen-bearing sites. Thus they are comparable to expected shift values in chair cyclohexanes.

701

No.	C-1	C-2	C-3	C4	C5	C-6	C-7	C-8	C-9	C-10	C-11	C-19	Me
lą	59.4	52.8	23.5	28.1	37.2	28.1	31.7	35.5	48.9	36.5	21.2	11.4	
lp	60.0	56.9	25.6	34.3	31.5	28.1	31.8	35.5	49.3	36.3	21.3	11.4	18.2
ļç	59.3	52.6	33.1	26.5	43.4	23.2	31.7	34.8	48.9	36.8	21.3	12.1	19.4
2ª	59.3	54.3	26.6	22.7	45.6	27.7	32.0	35.7	51.1	35.9	21.6	10.6	
2₽	59.8	58.9	28.4	30.0	39.6	27.7	32.0	35.8	51.2	36.0	21.6	10.8	17.5
2ç	59.4	54.1	35.8	24.9	51.2	22.6	32.0	35.8	51.2	36.7	21.8	11.6	19.2
3a	38.2	50.4	51.7	29.0	36.2	28.2	31.1	35.4	53.5	33.6	20.9	12.9	
3Þ	35.5	56.0	53.2	30.0	30.8	28.8	31.5	35.4	46.6	35.7	21.3	14.6	10.6
3℃	38.2	51.9	57.4	31.8	43.2	24.8	31.8	35.2	53.6	34.5	20.9	13.8	16.2
4 <u>a</u>	38.1	52.6	51.5	28.2 ^b	41.2	28.4 ^b	31.3	34.7	55.3	34.3	20.8	14.0	
4b	35.7	58.8	50.6	28.7	34.0	28.7	31.5	34.8	49.1	36.1	20.5	15.7	12.1
4ç	38.1	53.2	57.7	31.0 ^b	48.9	25.7	31.9 ^b	34.6	55.6	34.6	20.9	15.2	18.7
5a	30.4	21.3	51.9	55.6	46.7	26.7	31.4	35.3	52.6	34.0	21.3 ^d	13.4	
5£	32.8	28.5	52.5	56.3	38.5	27.0	31.8	35.3	47.9	36.7	20.3	15.5	16.3
<u>6</u> ą	33.6	21.2	50.3	57.6	46.2	25.3	31.8	35.4	54.7	35.7	20.7 ^d	14.0	
<u>6</u> þ	33.0	29.1	49.7 ^b	57.3	38.7	25.0	32.2	35.4	49.3 ^b	37.1	19.8	16.8 ^C	14.7 ⁰
	la-Me	Substi	tution 1	Effect									
3b-3a	-2.7	+5.6	+1.5	+1.0	-5.4	+0.6	+0.4	0.0	-6.9	+2.1	+0.4	+1.7	
4 b-4 a	-2.4	+6.2	-0.9	+0.5	-7.2	+0.3	+0.2	+0.1	-6.2	+1.8	-0.3	+1.7	
5 b-5 a	+2.4	+7.2	+0.6	+0.7	-8.2	+0.3	+0.4	0.0	-4.7	+2.7	-1.0	+2.1	
6b -6a	<u>-0.6</u>	+7.9	-0.6	-0.3	-7.5	-0.3	+0.4	0.0	-5.4	+1.4	-0.9	+2.7	
	За-Ме	Substi	tution H	ffect									
lb-la	+0.6	+4.1	+2.1	+6.2	-5.7	0.0	+0.1	0.0	+0.4	-0.2	+0.1	0.0	
2 b-2 a	+0.5	+4.6	+1.8	+7.3	-6.0	0.0	0.0	+0.1	+0.1	+0.1	0.0	+0.2	
	4β -Me	Substi	tution H	ffect									
lc-la	-0.1	-0.2	+9.6	-1.6	+6.2	-4.9	0.0	-0.7	0.0	+0.3	+0.1	+0.7	
2c-2a	+0.1	-0.2	+9.2	+2.2	+5.6	-5.1	0.0	+0.1	+0.1	+0.8	+0.2	+1.0	
3c-3a	0.0	+1.5	+5.7	+2.8	+7.0	-3.4	+0.7	-0.2	+0.1	+0.9	0.0	+0.9	
4 c- 4a	0.0	+0.6	+6.2	+2.8	+7.7	-2.7	+0.6	-0.1	+0.3	+0.3	+0.1	+1.2	

TABLE. ¹³C Chemical Shift Data for Steroidal Epoxides Examined, δ_{c}^{a} , and Methyl Substitution Effects in ppm

^a ¹³C FT NMR spectra were recorded on a Bruker HX-90E FT NMR spectrometer operating at 22.63 MHz in CDCl₃ containing TMS as an internal standard ($\delta_{\rm C}$ 0) at an ambient temperature; accuracies of $\delta_{\rm C}$ are about ±0.1. Chemical shifts for carbons from C-12 to C-18 and from C-20 to C-27 were only slightly affected by the structural changes in the A-ring and agree well with previous results.⁶ b,c These signal assignments may be reversed within a horizontal line. ^d See ref 3. lα-Me group is not situated at the carbon adjacent to the epoxide ring as in the cases of 5b and 6b, its α-effect causes a downfield shift for the former (+2.4 ppm, syn-relationship between epoxide and Me) and a slight upfield shift for the latter compound (-0.6 ppm, anti-relationship). The α-effect of 3α-Me and 4β-Me is downfield in the spectra of 1b, 2b, 3c, and 4c. However, the corresponding shift values of +2.1, +1.8, +2.8, and +2.8 ppm, respectively, are a little larger than the α-effect of an axial methyl group in a cyclohexane (+1.1 ± 0.2 ppm).⁷ When the 4β-Me group is not attached to the carbon adjacent to the epoxide (1c and 2c), its α-effect causes an upfield shift for the former (-1.6 ppm, anti-relationship) and a downfield shift for the latter compound (+2.2 ppm, syn-relationship). The rather larger variation in the α-effects is attributable to the fact that the half-chair conformation of the epoxy cyclohexanes becomes more or less distorted as a result of steric hindrance with the extra methyl group.[‡], §

The results presented here indicate that much care should be exercised in the structural analysis of natural products having cyclohexane rings in the half-chair conformation if the investigation is based on a ¹³C NMR spectral study. The α -effect due to a methyl group might be negative in such systems.

REFERENCES

- Résonance Magnétique Nucléaire du ¹³C de produtis Naturels et Apparantés, XXXII. For Part XXXI, see K. Tori, T. T. Thang, M. Sangaré and G. Lukacs, <u>Tetrahedron Lett</u>. to be published. This paper also constitutes Part XIX of NMR Studies on Steroids by the Shionogi Group.
- (2) K. Tori, T. Komeno, M. Sangaré, B. Septe, B. Delpech, A. Ahond and G. Lukacs, <u>Ibid</u>. 1157 (1974).
- (3) K. Tori, T. Komeno, J.-M. Takam and G. Lukacs, Ibid. 135 (1975).
- R. Wiechert, Z. <u>Naturforsch. 19b</u>, 944 (1964); H. Mori, <u>Chem. Pharm. Bull (Tokyo) 10</u>, 386 (1962); <u>Idem.</u>, <u>Ibid. 12</u>, 1224 (1964); P. Bertin and J. Perronnet, <u>Bull. Soc. Chim. France</u> 2782 (1964); W. J. Wechter, G. Slomp, F. A. MacKellar, R. Wiechert and U. Kerb, <u>Tetrahedron 21</u>, 1625 (1965).
- (5) Characterization and structure proof of all the new compounds will be reported in a full paper.
- (6) H. Eggert and C. Djerassi, J. Org. Chem. <u>38</u>, 3788 (1973).
- (7) J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York (1972).

 $[\]pm$ The corresponding unsaturated steroids seem to exhibit α-effects due to Me-substitution which are similar to those of the epoxides studied.² However, precise spectral analysis of the unsaturated compounds is difficult because the synthetic scheme affords mixtures. The α-epoxides from these mixtures can be easily separated.

[§] It seems worthwhile to describe here the effects of $l\alpha, 2\alpha$ - and $l\beta, 2\beta$ -epoxide formations, since they have not been reported. The TABLE shows that the steric γ -effects of the epoxide rings² shield C-3, C-5, and C-9 in la, and C-4 and C-10 in 2a, and that the steric δ -effect of the β -epoxide ring² slightly but appreciably deshields C-11 in 2a.